
Communications to the Editor 333 

as the degree of oligomerization will require an x-ray crystal-
lographic determination. It is clear, however, that these lan-
thanide-butadiene complexes represent a new class of orga-
nolanthanide compounds. 

These results suggest to us that a variety of organic species 
previously thought to be of little use as ligands for lanthanide 
metals will interact with these elements to form isolable 
complexes. Moreover, we expect the ligand chemistry to be 
observed will be distinct from that found for other organo-
metallic systems. We are actively pursuing these ideas. 
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Nonaqueous Reductive Lanthanide Chemistry. 2. 
Conversion of cis,cis- 1,5-Cyclooctadiene to 
Cyclooctatetraenyl Dianion by Reduced 
Praseodymium and Potassium 

Sir: 

We recently have described the synthesis of a new class of 
organolanthanide complexes obtained from 1,3-butadienes and 
vaporized lanthanide metal atoms as part of a general inves­
tigation of the nonaqueous reductive chemistry of the lan­
thanide elements.1 Concurrently with the metal vaporization 
studies we have endeavored to develop solution syntheses of 
lanthanide complexes in which a reduced oxidation state of the 
metal is involved. Since our previous results suggested that a 
variety of unsaturated organic molecules would be useful in 
organolanthanide chemistry, we have continued with such 
reactants in our solution studies. We report here preliminary 
results of an investigation of the reductive chemistry of PrCb 
which has led to a facile laboratory-scale synthesis of the cy­
clooctatetraenyl dianion, CgHg2-, from the readily available 
m,c/.r-l,5-cyclooctadiene (1,5-CsH]2). 

Anhydrous PrCb2,3 (2.5 g, 10 mmol) is reduced by potas­
sium (1.2 g, 30 mmol) in tetrahydrofuran (THF) at reflux in 
~4.5 h to form a black slurry. Removal of THF from this slurry 
by filtration4 gives a gray powder which reacts with 1,5-CgH 12

5 

(45 mL, 366 mmol) over a period of several days at room 
temperature. After removal of excess 1,5-CgHj2, the reaction 
residue is extracted with THF to give an intensely colored 
red-brown solution from which ~1.0 g6 of a red-brown solid, 
I, is isolable. I is not particularly stable, decomposing slowly 
in an inert atmosphere at room temperature. Spectral, mag­
netic, and analytical data on I were not definitive owing to this 
decomposition; hence simple chemical decomposition was 
examined to minimally identify carbon fragments present. 
Oxidative decomposition of I in benzene-^6 gave almost ex­
clusively 1,3,5,7-cyclooctatetraene, CsHg7! Soxhlet extraction 
with diethyl ether of samples of I which are partially decom­
posed gives yellow solids which have infrared and NMR 
spectra8 which match those reported for K2CgHg,9 but which 
by elemental analysis10 contain praseodymium, possibly as 
K[Pr(CgHg)2].n'12 In further confirmation of the presence 
of CgHs2-, I is observed to slowly react with UCU at room 
temperature to form uranocene, U(CgHg)2.

13'14 Although the 
mechanisms of formation of I and its subsequent decomposition 
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remain to be determined, it is clear that CgHg2- is generated 
from 1,5-CgH12 in this reaction. 

Several control reactions were conducted to define the role 
of praseodymium in this remarkable conversion. The reaction 
of 1,5-CgH ]2 with K alone at room temperature does not lead 
to formation of K2CgHg. Such a reaction is not necessarily a 
valid control, however, since it is possible that the PrC^ is in­
completely reduced by potassium, forming, instead, a potas­
sium-praseodymium-chloride matrix which contains active 
potassium with a large effective surface area. Reduced metal 
matrices of this type are postulated in the K-KI-metal halide 
preparations of activated metals by the Rieke method.15 To 
examine the effects of larger potassium surface area and more 
severe conditions,16 we reacted potassium with 1,5-CgHi2 at 
97 0C over a 5-day period. The volatile products of this reaction 
are m-bicyclo[3.3.0]oct-2-ene and a trace of 1,3-cycloocta-
diene, as previously reported.17 The solid residue which re­
mains following the removal in vacuo of volatiles can be ex­
tracted with THF to give an intense purple solution.18 Removal 
of the TH F gives a gray-purple solid which by IR, NMR, and 
elemental analysis contains CgHg2-.19 Air oxidation gives 
1,3,5,7-CgHg, identified by NMR and GC-mass spectroscopy. 
In a higher temperature, large-scale reaction, 1,5-CgHi2 (108 
g, 1 mol) at reflux reacted with K (4.5 g, 0.12 mol) in 1Oh to 
form, following THF extraction and solvent removal, 14.2 g 
of gray-green solids which either could be used directly in 
syntheses requiring CsHg2- or could be converted to 
1,3,5,7-C8H8 in 30% yield.21 Although the yield based on 
1,5-CgHj2 is not large, the reaction does provide a methodof 
obtaining quantities of CgHg2- and 1,3,5,7-CgHg for labora­
tory synthesis directly from potassium and 1,5-CgHj2, and is 
more efficient than the praseodymium-based synthesis. 

To determine if PrCb acts only as a partially reducible 
matrix which generates a large surface area for the remaining 
potassium in the room temperature conversion of 1,5-CgHi2 
to C8Hg2-, a reaction analogous to the PrC^-K reaction was 
investigated using MgCl2 as the reducible halide. The reaction 
itself is similar to the praseodymium reaction and a red-brown 
product is also obtained. This product, however, does not react 
with UCl4 to form U(C8Hg)2, does not give IR or NMR 
spectra consistent with K2C8Hg, and cannot be air oxidized 
to 1,3,5,7-C8H8. 

Although the above result does not exclude the possibility 
that PrCb acts as a dispersing agent for K, it does suggest that 
there are specific metal requirements for the room temperature 
reaction. Initial studies with other lanthanide trichlorides show 
that not all lanthanides are as effective as praseodymium; i.e., 
there appears to be a differentiation in the chemistry of the 
lanthanides in these reduction reactions. These above results 
and the possibility that lower valent lanthanide complexes of 
1,5-CgH)2 or CgH8 are involved in the 1,5-C8Hi2 to C8Hg2-

conversion are under further investigation. 
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Resonance Raman Spectra of Copper(III) Peptide 
Complexes 

Sir: 

Interest in the possible role of copper(III) in biochemistry 
has been heightened by the evidence presented by Hamilton 
and coworkers1-2 for its involvement in galactose oxidase, and 
by the demonstration by Margerum and coworkers3,4 that 
deprotonated oligopeptide complexes of copper(III) are rea­
sonably stable in neutral aqueous solution. Such complexes 
display intense absorption at 365 nm (« ~7100 M - 1 cm -1)3 

attributable to N (amide) -» Cu111 charge transfer, shifted to 
lower energy from the position (230-280 nm) of the corre­
sponding copper(II) peptide bands5 and are therefore good 

ctf, H ° 6 H ° 
coo(-) 
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